Temporal Difference Learning Applied to Sequential Detection - Neural Networks, IEEE Transactions on
نویسندگان
چکیده
This paper proposes a novel neural-network method for sequential detection. We first examine the optimal parametric sequential probability ratio test (SPRT) and make a simple equivalent transformation of the SPRT that makes it suitable for neural-network architectures. We then discuss how neural networks can learn the SPRT decision functions from observation data and labels. Conventional supervised learning algorithms have difficulties handling the variable length observation sequences, but a reinforcement learning algorithm, the temporal difference (TD) learning algorithm works ideally in training the neural network. The entire neural network is composed of context units followed by a feedforward neural network. The context units are necessary to store dynamic information that is needed to make good decisions. For an appropriate neural-network architecture, trained with independent and identically distributed (iid) observations by the TD learning algorithm, we show that the neural-network sequential detector can closely approximate the optimal SPRT with similar performance. The neural-network sequential detector has the additional advantage that it is a nonparametric detector that does not require probability density functions. Simulations demonstrated on iid Gaussian data show that the neural network and the SPRT have similar performance.
منابع مشابه
Temporal difference learning applied to sequential detection
This paper proposes a novel neural-network method for sequential detection, We first examine the optimal parametric sequential probability ratio test (SPRT) and make a simple equivalent transformation of the SPRT that makes it suitable for neural-network architectures. We then discuss how neural networks can learn the SPRT decision functions from observation data and labels. Conventional superv...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملTemporal album
Transient synchronization has been used as a mechanism of recognizing auditory patterns using integrate-and-fire neural networks. We first extend the mechanism to vision tasks and investigate the role of spike dependent learning. We show that such a temporal Hebbian learning rule significantly improves accuracy of detection. We demonstrate how multiple patterns can be identified by a single pat...
متن کاملAutonomous learning of sequential tasks: experiments and analyses
This paper presents a novel learning model CLARION, which is a hybrid model based on the two-level approach proposed by Sun. The model integrates neural, reinforcement, and symbolic learning methods to perform on-line, bottom-up learning (i.e., learning that goes from neural to symbolic representations). The model utilizes both procedural and declarative knowledge (in neural and symbolic repres...
متن کاملIncremental learning of complex temporal patterns
A neural model for temporal pattern generation is used and analyzed for training with multiple complex sequences in a sequential manner. The network exhibits some degree of interference when new sequences are acquired. It is proven that the model is capable of incrementally learning a finite number of complex sequences. The model is then evaluated with a large set of highly correlated sequences...
متن کامل